kz ru en

Авторизация


Квадрат теңдеулерді шешу әдістері

«Квадрат теңдеулер» мектептегі алгебра курсының маңызды тақырыптарының бірі. Көптеген табиғи үдірістер мен құбылыстар, с.с. мазмұнды есептердің шығарылуы квадрат теңдеулерді шешуге келіп тіреледі.Теңсіздіктерді шешу, функцияларды зерттеу (функцияның нөлдерін, экстремум нүктелерін, өсу және кему аралықтарын табу), ең үлкен және ең кіші мәндерді табу есептерін шығару және т.б. жағдайларда квадрат теңдеулерді шеше білу қажеттігі туындайды. Сондай-ақ тригонометриялық, көрсеткіштік және логарифмдік теңдеулерді, физикада және техникада, геометрия курсының есептерін алмастыру тәсілімен шешкенде квадрат теңдеулерге келтіріледі.Бірнеше әдістеріне тоқталайық:

1-әдіс. Теңдеудің сол жақ бөлігін көбейткіштерге жіктеу.

х2 + 10х - 24 = 0    теңдеуді жіктейміз .

 Теңдеудің сол жақ бөлігін  көбейткіштерге жіктейміз:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

    Демек, теңдеуді былай жазуға болады: 

(х + 12)(х - 2) = 0

Көбейтінді нөлге тең болғандықтан, ең болмағанда көбейткіштердің біреуі нөлге тең болуы керек. Сондықтан  теңдеулердің сол жақ бөлігіндегі х = 2 және  х = - 12  сандары  х2 + 10х - 24 = 0     теңдеуінің  түбірлері болып табылады.

2-әдіс. Толық квадратқа келтіру әдісі.

Мысал:   х2 + 6х - 7 = 0=0   теңдеуін шешейік.

 Сол  жақ бөлігін толық квадратқа келтіреміз. Ол үшін  х2 + 6х  өрнегін төмендегідей жазып аламыз:  

х2 + 6х = х2 + 2• х • 3.

Алынған өрнектің бірінші қосындысы х-тың квадраты, ал екінші қосындысы х пен 3-тің  екі  еселенгені. Толық квадрат алу үшін 32-ын қосу керек. Сонда  

х2 + 2• х • 3 + 32 = (х + 3)2.

Енді теңдеудің сол жағын  түрлендіреміз. Берілген теңдеуге 32 -ын қосып, алып тастаймыз. Сонда шығатыны:         

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.

Сонымен, берілген теңдеуді былайша жазуға болады:     

(х + 3)2 - 16 =0,  (х + 3)2 = 16.

Бұдан      , х + 3 - 4 = 0, х1 = 1, немесе   х + 3 = -4, х2 = -7.

3-әдіс. Квадраттық теңдеулерді формула арқылы шешу.

ах2  + bх + с = 0, а ≠ 0

теңдеудің екі жағын да 4а-ға көбейтеміз де, төмендегі өрнекті аламыз:

2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

Оған келесідегідей мысалдар келтіруге болады: 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4  • 3 = 49 - 48 = 1,

Д>0 болғандықтан, екі әр түрлі түбір  болады:   

Сонымен, дискриминант оң болғанда, яғни в2-4ас>0, ах2+вх+с=0 теңдеуінің екі түрлі түбірі болады.

б) 4х2 - 4х + 1 = 0, теңдеуін шешейік.

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

 D = 0, болғандықтан, бір ғана түбір бар болады

   

Сонымен, егер дискриминант нөлге тең болса, b2 - 4ac = 0, то уравнение

ах2  + bх + с = 0 теңдеуінің жалғыз  түбірі бар болады

 

в) 2х2 + 3х + 4 = 0, теңдеуін шешейік.

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2  • 4 = 9 - 32 = - 13 , D < 0.

 Д<0 болғандықтан, теңдеудің нақты сандар өрісінде түбірі болмайды..

Д<0 болғандықтан, теңдеудің нақты сандар өрісінде түбірі болмайды. b2 - 4ac < 0 онда   ах2  + bх + с = 0 теңдеуінің түбірі  болмайды

4-әдіс. Виет теоремасын пайдаланып теңдеулерді шешуКелтірілген түбірлері  Виет теоремасын  қанағаттандырады.

Ол былай беріледі:                          х2 + px + c = 0.                        (1)

а=1 болғанда,

x1 x2 = q,

    x1 + x2 = - p

     Бұдан  келесі  тұжырымдарды шығаруға болады:

а) Егер  q  (1)  теңдеудің  бос мүшесі оң болса (q0) онда теңдеудің екі бірдей таңбалы түбірі болады. Егер р>0, онда екі түбірі де теріс болады, егер р<0, онда  түбірлері оң болады.

 Мысал,x2 – 3x + 2 = 0; x1 = 2  және  x2 = 1, мұнда  q = 2 > 0 ,  p = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7  және  x2 = - 1,  мұнда q = 7 > 0  ,  p= 8 > 0.

б)  Егер q   (1) теңдеудің  бос мүшесі  теріс болса (q <0), онда теңдеудің  екі түрлі, таңбалы екі түбірі болады, түбірдің модулі бойынша үлкені оң болады, егер р <0 болса, теріс болады, егер р >0.       

Мысал:

x2 + 4x – 5 = 0; x1 = - 5 , x2 = 1,   мұнда  q= - 5 < 0  ,  p = 4 > 0;

x2 – 8x – 9 = 0; x1  = 9  и x2 = - 1, мұнда q = - 9 < 0 , p = - 8 < 0.

5-әдіс. Теңдеуді «асыра лақтыру» әдісімен шешу

ах2  + bх + с = 0, а ≠ 0.

квадрат теңдеуін қарастырамыз. Теңдеудің  екі жағын да а-ға көбейтіп, мынаны аламыз:

а2х2 + аbх + ас = 0.

. ах = у  деп белгілесек, х = у/а

 Олай болса 

 у2 + by + ас = 0,

теңдеуіне келеміз. Бұл  бастапқы теңдеумен тең. Теңдеудің  түбірлерін  у1,  у2 –ні Виет теоремасы  арқылы табамыз.

Соңында      х1 = у1/а  ,  х1 = у2/а -ны аламыз.  Бұл жағдайда а  коэффициентін бос мүшеге көбейтеді. Сондықтан  да бұл әдісті «асыра лақтыру» әдісі деп атайды . Бұл әдісті көбінесе Виет теоремасын пайдаланып түбірді оңай табуда және дискриминант дәл квадрат болғанда  қолданады.

мысалы,    2х2 – 11х + 15 = 0 теңдеуін шешейік.

Шешуі:  2 коэффициенті теңдеудің  бос мүшесіне асыра лақтырамыз, нәтижесінде:

у2 – 11у + 30 = 0.

Виет теоремасы бойынша

                                       у1 = 5               х1 = 5/2          x1 = 2,5

                                       у2 = 6                x2 = 6/2         x2 = 3.

Жауабы: 2,5; 3.

6-әдіс. Квадрат теңдеулердің коэффициенттерінің қасиеттерін қолдану.

ах2  + bх + с = 0, , а ≠ 0 квадрат теңдеуі берілген.

1) Егер, а+ b + с = 0   (яғни коэффициенттер қосындысы 0-ге тең) болса, онда  х1 = 1,

х2 = с/а.

Дәлелдеу:  а ≠ 0, келесідей квадрат теңдеуге келеміз.

x2 + b/a • x + c/a = 0.

 Виет теоремасы арқылы

                                                        x1 + x2 = - b/a,

                                                        x1x2 = 1• c/a.

 а – b +  с = 0 шарты бойынша, b = а + с аламыз. Олай болса,

                                              x1 + x2 = - а + b/a= -1 – c/a,

                                             x1x2  = - 1• ( - c/a),

х1 = -1 , х2 = c/a болатынын дәлелдндік.

 Мысал: 345х2 – 137х – 208 = 0 теңдеуін шешейік.

Шешуі.  а + b + с = 0 (345 – 137 – 208 = 0),

онда

х1 = 1,      х2 = c/a = -208/345.

Жауабы: 1; -208/345.

2) 132х2 – 247х + 115 = 0 теңдеуін шешейік.

Шешуі.  а + b + с = 0 (132 – 247 + 115 = 0),

онда

х1 = 1,    х2 = c/a = 115/132.

Жауабы: 1; 115/132.

0
1

Комментарии (0)